
P1: FMV/FRS/FEA

International Journal of Theoretical Physics [ijtp] PP190-341468 August 17, 2001 19:21 Style file version Nov. 19th, 1999

International Journal of Theoretical Physics, Vol. 40, No. 9, September 2001 (c© 2001)

Diagonal and Off-Diagonal Recursion Relation
for the General PotentialV(r) = Ar p

Harry A. Mavromatis 1

Received February 24, 2001

A recursion relation is derived for the potentialV(r ) = Ar p. Generally, this connects
off-diagonal matrix elements ofr k−2, r k+p, r k, andr k+2. The diagonal case is obtained
by settingm= n in this relation. The relation is derived by elementary methods and
without recourse to specific properties of the eigenstates. Finally, this relation is studied
for the familiar potentialsp = −1, 1, 2.

1. INTRODUCTION

It is useful to have a general recursion relation that one can apply to any
radial potentialV(r ) = Ar p. A diagonal recursion relation was obtained many
years ago for the Coulomb potential (p = −1), the so called Kramers relation
(Messiah, 1961). This relation connects the Coulomb-basis diagonal matrix ele-
ments〈r N〉, 〈r N−1〉, and〈r N−2〉, and was recently rederived using the Generalized
Hellmann–Feynman Theorem (Balasubramanian, 2000). Balasubramanian (2000)
also applied the Hellmann–Feynman Theorem to the harmonic oscillator (p = 2),
for which potential it yields a relation between the oscillator basis diagonal matrix
elements〈r 2N+2〉, 〈r 2N〉, and〈r 2N−2〉. This relation as well has been known for
many years (Beker, 1997).

The usefulness and popularity of recursion relations lies in the fact that they
point out to the student that different quantum mechanical matrix elements for a
given potential are related. Consequently, one need not go through the tedium of
evaluating matrix elements that are in fact interrelated. The student normally first
sees this property in the quantum mechanical virial theorem, where the matrix
elements of the potential and kinetic energies are seen to be related.

In another recent paper (Goodmanson, 2000), the one-dimensional bouncer
(p = 1) is examined. By using properties of the Airy functions, Goodmanson
(2000) relateszp−4, zp−2, zp−1, andzp matrix elements for this potential.
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Section 2 of the present paper involves a straightforward derivation for the
potentialV(r ) = Ar p, of a recursion relation that connectsoff-diagonalmatrix
elements ofr k−2, r k+p, r k, andr k+2. However, it also subsumes diagonal matrix
elements as a special case for which diagonal matrix elements (expectation values)
of r k−2, r k+p, andr k are seen to be related. No specific properties of the eigenstates
are required in this derivation. Thus, the derivation can easily be followed and
reproduced by an advanced undergraduate or graduate student. The derivation
being general, one can study the relation obtained for the Coulomb, oscillator,
or bouncer, where analytic relations are known. This is done in Sections 3 and 4
of this paper. Additionally, this recursion relation is valid for general potentials
V(r ) = Ar p, p 6= −1, 1, 2, where individual matrix elements must be evaluated
numerically.

2. DERIVATION OF THE RECURSION RELATION

The Schr¨odinger equation for the potentialV(r ) and radial eigenstates
Rnl(r ) = unl(r )/r , when written in terms ofunl(r ) becomes

u′′nl(r ) =
{

2(V(r )− Enl)+ l (l + 1)

r 2

}
unl(r ). (1)

Here we have setm= h = 1. In what follows thel in unl(r ) is suppressed to
make the expressions less cumbersome. The only property used is thatunl(r ) = 0
for r = 0,∞.

We first consider the integral
∫∞

0 um(r )un(r )r k dr . Integrating by parts,∫ ∞
0

um(r )un(r )r k dr = − 1

k+ 1

∫ ∞
0

d(um(r )un(r ))r k+1 dr,

i.e.

〈m|r k|n〉 = − 1

k+ 1

∫ ∞
0

(u′m(r )r k+1un(r )+ um(r )r k+1u′n(r )) dr. (2)

Similarly, the integral∫ ∞
0

u′m(r )u′n(r )r k dr = − 1

k+ 1

∫ ∞
0

d(u′m(r )u′n(r ))r k+1 dr

= − 1

k+ 1

∫ ∞
0

(u′m(r )r k+1u′′n(r )+ u′′m(r )r k+1u′n(r )) dr. (3)
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However, one can also write this integral as∫ ∞
0

u′mu′nr k dr = −1

2

{∫ ∞
0

d(r ku′m(r ))un(r ) dr +
∫ ∞

0
d(r ku′n(r )) um(r ) dr

}
= −k

2

∫ ∞
0

(u′mr k−1un + umr k−1u′n) dr

− 1

2

∫ ∞
0

r k(u′′mun + umu′′n) dr (4)

or, using Eq. (2) withk→ k− 2,∫ ∞
0

u′m(r )u′n(r )r k dr = k(k− 1)

2
〈m|r k−2|n〉 − 1

2

∫ ∞
0

r k(u′′mun + u′′num) dr. (5)

Combining Eqs. (3) and (5) one then has

k(k− 1)

2
〈m|r k−2|n〉 =

∫ ∞
0

(
um

2
r k − 1

k+ 1
u′mr k+1

)
u′′n dr

+
∫ ∞

0

(
un

2
r k − 1

k+ 1
u′nr k+1

)
u′′m dr. (6)

If one substitutes the Schr¨odinger Eq. (1) foru′′n, andu′′m, in Eq. (6), and
assumes the explicit formAr p for V(r ), one obtains after a little manipulation

k(k2− (2l + 1)2)

2(k+ 1)
〈m|r k−2|n〉 − 2(p+ 2k+ 2)

k+ 1

× 〈m|r kV(r )|n〉 + (En + Em)〈m|r k|n〉 − 2

k+ 1

×
[

En

∫ ∞
0

u′mr k+1un dr + Em

∫ ∞
0

umr k+1u′n dr

]
= 0. (7)

This is the desired relation except for the last two terms that involve deriva-
tives. But, ∫ ∞

0
u′mr k+1un dr = − 1

k+ 2

∫ ∞
0

d(u′mun)r k+2 dr

= − 1

k+ 2

∫ ∞
0

(u′′mun + u′mu′n) r k+2 dr. (8)
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Hence

En

∫ ∞
0

u′mr k+1un dr + Em

∫ ∞
0

umr k+1u′n dr

= − 1

k+ 2
En

∫ ∞
0

r k+2u′′mun dr − 1

k+ 2
Em

∫ ∞
0

r k+2umu′′n dr

− Em + En

k+ 2

∫ ∞
0

u′mu′nr k+2 dr. (9)

Using Eq. (5) withk→ k+ 2 in Eq. (9) one then obtains

En

∫ ∞
0

u′mr k+1un dr + Em

∫ ∞
0

umr k+1u′n dr

= − (Em + En)(k+ 1)

2
〈m|r k|n〉

+ (Em − En)

2(k+ 2)

∫ ∞
0

(u′′mun − umu′′n) r k+2 dr. (10)

A final substitution of the Schr¨odinger Eq. (1) to eliminateu′′m andu′′n in Eq. (10),
yields the following result:

En

∫ ∞
0

u′mr k+1un dr + Em

∫ ∞
0

umr k+1u′n dr

= − (Em + En)(k+ 1)

2
〈m|r k|n〉 − (Em − En)2

(k+ 2)
〈m|r k+2|n〉. (11)

When Eq. (11) is substituted in Eq. (7) one obtains the desired general result:

k(k2− (2l + 1)2)

2(k+ 1)
〈m|r k−2|n〉 − 2(p+ 2k+ 2)

k+ 1
〈m|r kV(r )|n〉

+ 2(En + Em)〈m|r k|n〉 + 2(Em − En)2

(k+ 1)(k+ 2)
〈m|r k+2|n〉 = 0. (12)

This expression is not valid ifk = −1, or−2, as can be seen if one carefully
examines the surface terms in this derivation.

3. DIAGONAL CASE

Consider the casem= n in Eq. (12). The last term in then zero and the
recursion relation reduces to

k(k2− (2l + 1)2)

2(k+ 1)
〈m|r k−2|m〉 − 2(p+ 2k+ 2)

k+ 1
〈m|r kV(r )|m〉

+ 4Em 〈m|r k|m〉 = 0. (13)
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If additionally k = 0, this reduces to the quantum mechanical virial theorem
(Merzbacher, 1970):

Em = p+ 2

2
〈m|V(r )|m〉

or if T is the kinetic energy operator

〈m|T |n〉 = p

2
〈m|V(r )|m〉. (14)

If one substitutesV(r ) = 1
2r 2 andEm = (2m+ l + 3

2), in Eq. (13), this reduces to
the familiar oscillator result (Balasubramanian, 2000; Beker, 1997):

k(k2− (2l + 1)2)

2(k+ 1)
〈m|r k−2|m〉 − 2(k+ 2)

k+ 1
〈m|r k+2|m〉

+ 4

(
2m+ l + 3

2

)
〈m|r k|m〉 = 0. (15)

For the Coulomb potentialV(r ) = − 1
r and Em = − 1

2m2 one obtains Kramers’
relation.

Substituting the potentialV(r ) = r , and withl = 0 in Eq. (13), one has the
three-dimensional bouncer with zero angular momentum:

k(k− 1)

2
〈m|r k−2|m〉 − 2(2k+ 3)

k+ 1
〈m|r k+1|m〉 + 4Em 〈m|r k|m〉 = 0. (16)

This is equivalent to the diagonal results in Goodmanson (2000) if one bears in
mind that Goodmanson’s Schr¨odinger equation is given without the factor 1/2.

4. OFF-DIAGONAL CASE

Consider the casem 6= n andk = 0. Then

〈m|V(r )|n〉 = (En − Em)2 〈m|r 2|n〉
2(p+ 2)

. (17)

If one substitutesp = 1 in Eq. (12) one gets the off-diagonal results of Goodmanson
(2000) with the same considerations as earlier about the absence of a factor 1/2 in
Goodmanson’s Schr¨odinger equation.

Many other results can be obtained from Eq. (12), by choosingk 6= 0, and
specifying other potentials, etc.

5. CONCLUSIONS

The new result derived in this paper, namely Eq. (12), is a recursion relation
for a general potentialV(r ) = Ar p. It involves a recursion relation for off-diagonal
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matrix elements ifm 6= n, and, for the special casem= n, for diagonal matrix
elements. Several interesting special results follow from this new, general recursion
relation.
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